\(\int \frac {(c+d x^2)^{3/2}}{(a+b x^2)^{7/2}} \, dx\) [177]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 315 \[ \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{7/2}} \, dx=\frac {(b c-a d) x \sqrt {c+d x^2}}{5 a b \left (a+b x^2\right )^{5/2}}+\frac {2 (2 b c+a d) x \sqrt {c+d x^2}}{15 a^2 b \left (a+b x^2\right )^{3/2}}+\frac {\left (8 b^2 c^2-3 a b c d-2 a^2 d^2\right ) \sqrt {c+d x^2} E\left (\arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|1-\frac {a d}{b c}\right )}{15 a^{5/2} b^{3/2} (b c-a d) \sqrt {a+b x^2} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}}-\frac {c^{3/2} \sqrt {d} (4 b c-a d) \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{15 a^3 b (b c-a d) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \]

[Out]

-1/15*c^(3/2)*(-a*d+4*b*c)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/
2),(1-b*c/a/d)^(1/2))*d^(1/2)*(b*x^2+a)^(1/2)/a^3/b/(-a*d+b*c)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(d*x^2+c)^(1/2)
+1/5*(-a*d+b*c)*x*(d*x^2+c)^(1/2)/a/b/(b*x^2+a)^(5/2)+2/15*(a*d+2*b*c)*x*(d*x^2+c)^(1/2)/a^2/b/(b*x^2+a)^(3/2)
+1/15*(-2*a^2*d^2-3*a*b*c*d+8*b^2*c^2)*(1/(1+b*x^2/a))^(1/2)*(1+b*x^2/a)^(1/2)*EllipticE(x*b^(1/2)/a^(1/2)/(1+
b*x^2/a)^(1/2),(1-a*d/b/c)^(1/2))*(d*x^2+c)^(1/2)/a^(5/2)/b^(3/2)/(-a*d+b*c)/(b*x^2+a)^(1/2)/(a*(d*x^2+c)/c/(b
*x^2+a))^(1/2)

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 315, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {424, 541, 539, 429, 422} \[ \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{7/2}} \, dx=-\frac {c^{3/2} \sqrt {d} \sqrt {a+b x^2} (4 b c-a d) \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{15 a^3 b \sqrt {c+d x^2} (b c-a d) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {2 x \sqrt {c+d x^2} (a d+2 b c)}{15 a^2 b \left (a+b x^2\right )^{3/2}}+\frac {\sqrt {c+d x^2} \left (-2 a^2 d^2-3 a b c d+8 b^2 c^2\right ) E\left (\arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|1-\frac {a d}{b c}\right )}{15 a^{5/2} b^{3/2} \sqrt {a+b x^2} (b c-a d) \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}}+\frac {x \sqrt {c+d x^2} (b c-a d)}{5 a b \left (a+b x^2\right )^{5/2}} \]

[In]

Int[(c + d*x^2)^(3/2)/(a + b*x^2)^(7/2),x]

[Out]

((b*c - a*d)*x*Sqrt[c + d*x^2])/(5*a*b*(a + b*x^2)^(5/2)) + (2*(2*b*c + a*d)*x*Sqrt[c + d*x^2])/(15*a^2*b*(a +
 b*x^2)^(3/2)) + ((8*b^2*c^2 - 3*a*b*c*d - 2*a^2*d^2)*Sqrt[c + d*x^2]*EllipticE[ArcTan[(Sqrt[b]*x)/Sqrt[a]], 1
 - (a*d)/(b*c)])/(15*a^(5/2)*b^(3/2)*(b*c - a*d)*Sqrt[a + b*x^2]*Sqrt[(a*(c + d*x^2))/(c*(a + b*x^2))]) - (c^(
3/2)*Sqrt[d]*(4*b*c - a*d)*Sqrt[a + b*x^2]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(15*a^3*b*
(b*c - a*d)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 424

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a*d - c*b)*x*(a + b*x^n)^(
p + 1)*((c + d*x^n)^(q - 1)/(a*b*n*(p + 1))), x] - Dist[1/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)
^(q - 2)*Simp[c*(a*d - c*b*(n*(p + 1) + 1)) + d*(a*d*(n*(q - 1) + 1) - b*c*(n*(p + q) + 1))*x^n, x], x], x] /;
 FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, n, p, q
, x]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 539

Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)^(3/2)), x_Symbol] :> Dist[(b*e - a*
f)/(b*c - a*d), Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[Sqrt[a + b
*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[b/a] && PosQ[d/c]

Rule 541

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[(
-(b*e - a*f))*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*n*(b*c - a*d)*(p + 1))), x] + Dist[1/(a*n*(b*c - a
*d)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*
f)*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {(b c-a d) x \sqrt {c+d x^2}}{5 a b \left (a+b x^2\right )^{5/2}}+\frac {\int \frac {c (4 b c+a d)+d (3 b c+2 a d) x^2}{\left (a+b x^2\right )^{5/2} \sqrt {c+d x^2}} \, dx}{5 a b} \\ & = \frac {(b c-a d) x \sqrt {c+d x^2}}{5 a b \left (a+b x^2\right )^{5/2}}+\frac {2 (2 b c+a d) x \sqrt {c+d x^2}}{15 a^2 b \left (a+b x^2\right )^{3/2}}-\frac {\int \frac {-c (b c-a d) (8 b c+a d)-2 d (b c-a d) (2 b c+a d) x^2}{\left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}} \, dx}{15 a^2 b (b c-a d)} \\ & = \frac {(b c-a d) x \sqrt {c+d x^2}}{5 a b \left (a+b x^2\right )^{5/2}}+\frac {2 (2 b c+a d) x \sqrt {c+d x^2}}{15 a^2 b \left (a+b x^2\right )^{3/2}}-\frac {(c d (4 b c-a d)) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{15 a^2 b (b c-a d)}+\frac {\left (8 b^2 c^2-3 a b c d-2 a^2 d^2\right ) \int \frac {\sqrt {c+d x^2}}{\left (a+b x^2\right )^{3/2}} \, dx}{15 a^2 b (b c-a d)} \\ & = \frac {(b c-a d) x \sqrt {c+d x^2}}{5 a b \left (a+b x^2\right )^{5/2}}+\frac {2 (2 b c+a d) x \sqrt {c+d x^2}}{15 a^2 b \left (a+b x^2\right )^{3/2}}+\frac {\left (8 b^2 c^2-3 a b c d-2 a^2 d^2\right ) \sqrt {c+d x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|1-\frac {a d}{b c}\right )}{15 a^{5/2} b^{3/2} (b c-a d) \sqrt {a+b x^2} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}}-\frac {c^{3/2} \sqrt {d} (4 b c-a d) \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{15 a^3 b (b c-a d) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 4.59 (sec) , antiderivative size = 285, normalized size of antiderivative = 0.90 \[ \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{7/2}} \, dx=\frac {\sqrt {\frac {b}{a}} x \left (c+d x^2\right ) \left (3 a^2 (b c-a d)^2+2 a (b c-a d) (2 b c+a d) \left (a+b x^2\right )+\left (8 b^2 c^2-3 a b c d-2 a^2 d^2\right ) \left (a+b x^2\right )^2\right )-i c \left (a+b x^2\right )^2 \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} \left (\left (-8 b^2 c^2+3 a b c d+2 a^2 d^2\right ) E\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )+\left (8 b^2 c^2-7 a b c d-a^2 d^2\right ) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right ),\frac {a d}{b c}\right )\right )}{15 a^4 \left (\frac {b}{a}\right )^{3/2} (b c-a d) \left (a+b x^2\right )^{5/2} \sqrt {c+d x^2}} \]

[In]

Integrate[(c + d*x^2)^(3/2)/(a + b*x^2)^(7/2),x]

[Out]

(Sqrt[b/a]*x*(c + d*x^2)*(3*a^2*(b*c - a*d)^2 + 2*a*(b*c - a*d)*(2*b*c + a*d)*(a + b*x^2) + (8*b^2*c^2 - 3*a*b
*c*d - 2*a^2*d^2)*(a + b*x^2)^2) - I*c*(a + b*x^2)^2*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*((-8*b^2*c^2 + 3*
a*b*c*d + 2*a^2*d^2)*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] + (8*b^2*c^2 - 7*a*b*c*d - a^2*d^2)*Ellipt
icF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)]))/(15*a^4*(b/a)^(3/2)*(b*c - a*d)*(a + b*x^2)^(5/2)*Sqrt[c + d*x^2])

Maple [A] (verified)

Time = 3.41 (sec) , antiderivative size = 552, normalized size of antiderivative = 1.75

method result size
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}\, \left (-\frac {\left (a d -b c \right ) x \sqrt {b d \,x^{4}+a d \,x^{2}+c b \,x^{2}+a c}}{5 a \,b^{4} \left (x^{2}+\frac {a}{b}\right )^{3}}+\frac {2 \left (a d +2 b c \right ) x \sqrt {b d \,x^{4}+a d \,x^{2}+c b \,x^{2}+a c}}{15 a^{2} b^{3} \left (x^{2}+\frac {a}{b}\right )^{2}}+\frac {\left (b d \,x^{2}+b c \right ) x \left (2 a^{2} d^{2}+3 a b c d -8 b^{2} c^{2}\right )}{15 b^{2} a^{3} \left (a d -b c \right ) \sqrt {\left (x^{2}+\frac {a}{b}\right ) \left (b d \,x^{2}+b c \right )}}+\frac {\left (\frac {2 d \left (a d +2 b c \right )}{15 a^{2} b^{2}}-\frac {2 a^{2} d^{2}+3 a b c d -8 b^{2} c^{2}}{15 b^{2} a^{3}}-\frac {c \left (2 a^{2} d^{2}+3 a b c d -8 b^{2} c^{2}\right )}{15 b \,a^{3} \left (a d -b c \right )}\right ) \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c b \,x^{2}+a c}}+\frac {\left (2 a^{2} d^{2}+3 a b c d -8 b^{2} c^{2}\right ) c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-E\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{15 b \left (a d -b c \right ) a^{3} \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c b \,x^{2}+a c}}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(552\)
default \(\text {Expression too large to display}\) \(1410\)

[In]

int((d*x^2+c)^(3/2)/(b*x^2+a)^(7/2),x,method=_RETURNVERBOSE)

[Out]

((b*x^2+a)*(d*x^2+c))^(1/2)/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)*(-1/5*(a*d-b*c)/a/b^4*x*(b*d*x^4+a*d*x^2+b*c*x^2+a
*c)^(1/2)/(x^2+a/b)^3+2/15*(a*d+2*b*c)/a^2/b^3*x*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)/(x^2+a/b)^2+1/15*(b*d*x^2
+b*c)/b^2/a^3/(a*d-b*c)*x*(2*a^2*d^2+3*a*b*c*d-8*b^2*c^2)/((x^2+a/b)*(b*d*x^2+b*c))^(1/2)+(2/15*d*(a*d+2*b*c)/
a^2/b^2-1/15/b^2*(2*a^2*d^2+3*a*b*c*d-8*b^2*c^2)/a^3-1/15/b*c/a^3/(a*d-b*c)*(2*a^2*d^2+3*a*b*c*d-8*b^2*c^2))/(
-b/a)^(1/2)*(1+b*x^2/a)^(1/2)*(1+d*x^2/c)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(
-1+(a*d+b*c)/c/b)^(1/2))+1/15/b*(2*a^2*d^2+3*a*b*c*d-8*b^2*c^2)/(a*d-b*c)/a^3*c/(-b/a)^(1/2)*(1+b*x^2/a)^(1/2)
*(1+d*x^2/c)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(EllipticF(x*(-b/a)^(1/2),(-1+(a*d+b*c)/c/b)^(1/2))-Ell
ipticE(x*(-b/a)^(1/2),(-1+(a*d+b*c)/c/b)^(1/2))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 635 vs. \(2 (297) = 594\).

Time = 0.10 (sec) , antiderivative size = 635, normalized size of antiderivative = 2.02 \[ \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{7/2}} \, dx=-\frac {{\left (8 \, a^{3} b^{3} c^{2} - 3 \, a^{4} b^{2} c d - 2 \, a^{5} b d^{2} + {\left (8 \, b^{6} c^{2} - 3 \, a b^{5} c d - 2 \, a^{2} b^{4} d^{2}\right )} x^{6} + 3 \, {\left (8 \, a b^{5} c^{2} - 3 \, a^{2} b^{4} c d - 2 \, a^{3} b^{3} d^{2}\right )} x^{4} + 3 \, {\left (8 \, a^{2} b^{4} c^{2} - 3 \, a^{3} b^{3} c d - 2 \, a^{4} b^{2} d^{2}\right )} x^{2}\right )} \sqrt {a c} \sqrt {-\frac {b}{a}} E(\arcsin \left (x \sqrt {-\frac {b}{a}}\right )\,|\,\frac {a d}{b c}) - {\left (8 \, a^{3} b^{3} c^{2} + {\left (8 \, b^{6} c^{2} + {\left (4 \, a^{2} b^{4} - 3 \, a b^{5}\right )} c d - {\left (a^{3} b^{3} + 2 \, a^{2} b^{4}\right )} d^{2}\right )} x^{6} + 3 \, {\left (8 \, a b^{5} c^{2} + {\left (4 \, a^{3} b^{3} - 3 \, a^{2} b^{4}\right )} c d - {\left (a^{4} b^{2} + 2 \, a^{3} b^{3}\right )} d^{2}\right )} x^{4} + {\left (4 \, a^{5} b - 3 \, a^{4} b^{2}\right )} c d - {\left (a^{6} + 2 \, a^{5} b\right )} d^{2} + 3 \, {\left (8 \, a^{2} b^{4} c^{2} + {\left (4 \, a^{4} b^{2} - 3 \, a^{3} b^{3}\right )} c d - {\left (a^{5} b + 2 \, a^{4} b^{2}\right )} d^{2}\right )} x^{2}\right )} \sqrt {a c} \sqrt {-\frac {b}{a}} F(\arcsin \left (x \sqrt {-\frac {b}{a}}\right )\,|\,\frac {a d}{b c}) - {\left ({\left (8 \, a b^{5} c^{2} - 3 \, a^{2} b^{4} c d - 2 \, a^{3} b^{3} d^{2}\right )} x^{5} + 2 \, {\left (10 \, a^{2} b^{4} c^{2} - 4 \, a^{3} b^{3} c d - 3 \, a^{4} b^{2} d^{2}\right )} x^{3} + {\left (15 \, a^{3} b^{3} c^{2} - 11 \, a^{4} b^{2} c d - a^{5} b d^{2}\right )} x\right )} \sqrt {b x^{2} + a} \sqrt {d x^{2} + c}}{15 \, {\left (a^{7} b^{3} c - a^{8} b^{2} d + {\left (a^{4} b^{6} c - a^{5} b^{5} d\right )} x^{6} + 3 \, {\left (a^{5} b^{5} c - a^{6} b^{4} d\right )} x^{4} + 3 \, {\left (a^{6} b^{4} c - a^{7} b^{3} d\right )} x^{2}\right )}} \]

[In]

integrate((d*x^2+c)^(3/2)/(b*x^2+a)^(7/2),x, algorithm="fricas")

[Out]

-1/15*((8*a^3*b^3*c^2 - 3*a^4*b^2*c*d - 2*a^5*b*d^2 + (8*b^6*c^2 - 3*a*b^5*c*d - 2*a^2*b^4*d^2)*x^6 + 3*(8*a*b
^5*c^2 - 3*a^2*b^4*c*d - 2*a^3*b^3*d^2)*x^4 + 3*(8*a^2*b^4*c^2 - 3*a^3*b^3*c*d - 2*a^4*b^2*d^2)*x^2)*sqrt(a*c)
*sqrt(-b/a)*elliptic_e(arcsin(x*sqrt(-b/a)), a*d/(b*c)) - (8*a^3*b^3*c^2 + (8*b^6*c^2 + (4*a^2*b^4 - 3*a*b^5)*
c*d - (a^3*b^3 + 2*a^2*b^4)*d^2)*x^6 + 3*(8*a*b^5*c^2 + (4*a^3*b^3 - 3*a^2*b^4)*c*d - (a^4*b^2 + 2*a^3*b^3)*d^
2)*x^4 + (4*a^5*b - 3*a^4*b^2)*c*d - (a^6 + 2*a^5*b)*d^2 + 3*(8*a^2*b^4*c^2 + (4*a^4*b^2 - 3*a^3*b^3)*c*d - (a
^5*b + 2*a^4*b^2)*d^2)*x^2)*sqrt(a*c)*sqrt(-b/a)*elliptic_f(arcsin(x*sqrt(-b/a)), a*d/(b*c)) - ((8*a*b^5*c^2 -
 3*a^2*b^4*c*d - 2*a^3*b^3*d^2)*x^5 + 2*(10*a^2*b^4*c^2 - 4*a^3*b^3*c*d - 3*a^4*b^2*d^2)*x^3 + (15*a^3*b^3*c^2
 - 11*a^4*b^2*c*d - a^5*b*d^2)*x)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c))/(a^7*b^3*c - a^8*b^2*d + (a^4*b^6*c - a^5*b
^5*d)*x^6 + 3*(a^5*b^5*c - a^6*b^4*d)*x^4 + 3*(a^6*b^4*c - a^7*b^3*d)*x^2)

Sympy [F]

\[ \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{7/2}} \, dx=\int \frac {\left (c + d x^{2}\right )^{\frac {3}{2}}}{\left (a + b x^{2}\right )^{\frac {7}{2}}}\, dx \]

[In]

integrate((d*x**2+c)**(3/2)/(b*x**2+a)**(7/2),x)

[Out]

Integral((c + d*x**2)**(3/2)/(a + b*x**2)**(7/2), x)

Maxima [F]

\[ \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{7/2}} \, dx=\int { \frac {{\left (d x^{2} + c\right )}^{\frac {3}{2}}}{{\left (b x^{2} + a\right )}^{\frac {7}{2}}} \,d x } \]

[In]

integrate((d*x^2+c)^(3/2)/(b*x^2+a)^(7/2),x, algorithm="maxima")

[Out]

integrate((d*x^2 + c)^(3/2)/(b*x^2 + a)^(7/2), x)

Giac [F]

\[ \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{7/2}} \, dx=\int { \frac {{\left (d x^{2} + c\right )}^{\frac {3}{2}}}{{\left (b x^{2} + a\right )}^{\frac {7}{2}}} \,d x } \]

[In]

integrate((d*x^2+c)^(3/2)/(b*x^2+a)^(7/2),x, algorithm="giac")

[Out]

integrate((d*x^2 + c)^(3/2)/(b*x^2 + a)^(7/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{7/2}} \, dx=\int \frac {{\left (d\,x^2+c\right )}^{3/2}}{{\left (b\,x^2+a\right )}^{7/2}} \,d x \]

[In]

int((c + d*x^2)^(3/2)/(a + b*x^2)^(7/2),x)

[Out]

int((c + d*x^2)^(3/2)/(a + b*x^2)^(7/2), x)